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Abstract: The Chemical Engineering program at Arizona State offers an integrated series of
core courses that teach students how conservation and accounting principles can be applied
to describe engineering phenomena across disciplines. A brine-water mixing tank experiment
was introduced in the third course in the series (ECE 394C: Understanding Engineering
Systems Via Conservation) as a capstone modeling project for the recitation portion of the
course. The experiment provides students with “hands-on” experience on a real-life system
incorporating process, electrical, and mechanical components, as well as real-time data
acquisition and control. A major feature of the brine-water tank project is that students apply
a comprehensive system identification procedure relying on semiphysical (a.k.a. “grey box”)
models to complement their understanding of first-principles modeling. This paper describes
the brine-water tank experiment, presents the formulation of the semiphysical parameter
estimation problem, and describes the comprehensive procedure that students undertake to
go from process data to validated plant models.
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1. INTRODUCTION

ECE 394 Systems, Understanding Engineering Sys-
tems via Conservation, is the third in an experimen-
tal core curriculum developed at Texas A&M which
has been part of the Chemical Engineering curriculum
since the fall of 1992. Students traditionally take ECE
394 Systems in the spring semester of their junior year.
This four credit hour course is structured with three
lecture hours a week and one weekly 2-hour recitation.
The course stresses the broad-based use of accounting
and conservation principles to model systems involv-
ing process, electrical, and mechanical components
(separately and in combination). Another principal
course objective is the use of computer-based tools to
model engineering systems of practical interest.
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In ECE 394 Systems, students are confronted with the
“reality” of engineering systems from the very first
lecture. Students are made aware that real systems are:

• dynamic/unsteady-state (“steady-state is a fig-
ment of the imagination”),
• nonlinear,
• multivariable (i.e., possess multiple inputs and

outputs),
• uncertain (i.e., models of real systems lack accu-

racy),
• stochastic (i.e., real systems are subject to ran-

dom behavior, and as such cannot be always de-
scribed by deterministic models). Precision er-
rors will always be present in models.

Students are also presented in the first lecture (and fre-
quently reminded thereafter) of the saying attributed
to famous statistician Professor G.E.P. Box of the
University of Wisconsin, “all models are wrong, but
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some models are useful.” Students work in recitation
as part of three-person teams. Two individual reports
and three group presentations are required as part of
the modeling project.

The brine-water tank experiment (Figure 1) is used
in ECE 394 Systems as an ongoing project to bring
students to reconcile the abstraction of mathematical
modeling with the realities of a practical system. The
main objective of this experiment is to develop, via
first principles and semiphysical modeling techniques,
useful mathematical models of the tank behavior dis-
playing good predictive ability. Specifically, the stu-
dents are asked to model the dynamic response of salt
concentration in the outlet stream (c) and level in the
tank (h) to changes in the inlet brine flowrate (qc),
the fresh water flowrate (qw), and outlet flow (qF ).
The tank is interfaced to a industrial-scale real-time
computing platform, namely a Honeywell TotalPlant
Solution System (previously known as the TDC3000,
Figure 3). The engineer is capable of adjusting all
three tank flows via the TDC3000 regulatory control
points FIC100, FIC101, and LIC100 (see Figure 1).
The experiment also requires students to generate a
suitable calibration between the signal generated from
an on-line conductivity sensor and the salt concentra-
tion (in g/�) for the outlet stream in the tank.

The paper is organized as follows. Section 2 presents
a brief description of the experimental apparatus. Sec-
tion 3 discusses the first-principles model for the tank
and the corresponding derivation of a semiphysical
model for this system. Section 4 describes the steps
involved in developing a comprehensive semiphysical
modeling procedure, beginning from experimental de-
sign and concluding with model validation. Section 5
presents a summary and conclusions.

2. EXPERIMENTAL DESCRIPTION

Figure 1 shows both the process and the instrumenta-
tion used in this experiment. The flow of tap water to
the process is regulated by measuring the flow with an
orifice meter and changing the valve position on the
water line according to an algorithm in a regulatory
control point in the TDC3000. This control loop is
assigned the tagname FIC100. Similarly, the flow of
a concentrated salt solution is controlled with loop
FIC101. The level in the tank is measured with a
differential pressure cell (d/p) with one leg connected
to the bottom of the tank and the other leg open to
the atmosphere. The regulatory control point LIC100
compares this level with a desired level and manip-
ulates the flow through the drain line. The salt con-
centration leaving and entering the tank is measured
with conductivity cells and read into the system via
analog input points CI100 and CI102, respectively.
The conductivity measurements are displayed as the
PVs (Process Values) of CI100 and CI102. By setting

the appropriate instrument range limit parameters in
the system (PVEUHI and PVEULO) the students are
able to implement a linear correlation relating the raw
4-20ma signal from the conductivity cells to a sensible
value for concentration in units of g/�. CIC100 is a
regulatory control point used in a subsequent course
(ChE 461 Introduction to Process Control) (Rivera et
al., 1996) which adjusts the salt inlet flowrate setpoint
(FIC101.SP) to keep exit stream salt concentration at
setpoint (CI100.PV); students are asked to leave this
point on MANUAL throughout the experiment.

3. BRINE-WATER TANK MODELING

3.1 First-principles modeling

During lecture and through homework assignments,
students use MATLAB with SIMULINK to develop a
first-principles dynamical model describing the effect
of the various system inputs on the level and salt
concentration. The principles of conservation of total
mass and accounting of the salt species in the tank are
used to derive this model. The level dynamics of the
system are described by a differential equation arising
from the conservation of total mass in the system

dh

dt
=

1
A

(qw− qF +
ρc
ρ
qc) (1)

while the dynamics of salt in the tank are modeled by
accounting for this species in the system:

dc

dt
=
qc
V

(cc−
ρc
ρ
c)− qwc

V
, V = hA (2)

A, the crossectional area of the tank, ρc and ρ, the
inlet brine and inlet water/outlet stream densities (re-
spectively), and cc, the inlet brine concentration, are
constant-valued parameters in the model. An example
of the SIMULINK window built by students is shown
in Figure 2. Furthermore, Matlab with SIMULINK
can be used compare the results of the first-principles
nonlinear model with the responses obtained from its
linearized equivalent at an operating condition; this
enables students to evaluate the modeling errors as-
sociated with linearization.

3.2 Semiphysical modeling

The derivation of the semiphysical model follows
along the line of the analysis presented in Lindskog
(1996). Assuming constant volume in the tank (as the
result of tight level control in the system) and constant
densities for all streams, the first-principles model per
Equations 1 and 2 reduces to:

dc

dt
=
qc cc
V
− (qc+ qw) c

V
(3)

Using a forward-difference approximation on the
derivative (for a sampling time T ) leads to



c(t+1)− c(t)
T

=
qc(t) cc(t)

V
(4)

− (qc(t)+ qw(t)) c(t)
V

which solving for c(t+1) yields

c(t+1) = c(t)+
qc(t) cc(t) T

V
(5)

− (qc(t)+ qw(t)) c(t) T
V

Rearranging and consolidating terms leads to the
semiphysical structure

c(k) = c(k−1)+θ1qc(k−1)cc(k−1)+ (6)

θ2qc(k−1)c(k−1)+θ3qw(k−1)c(k−1)

Estimates of θ1, θ2, and θ3 can be obtained from the
first-principles model

θ1 =
T

V
θ2 =−T

V
θ3 =−T

V
(7)

or alternatively, they can be estimated from plant data
by recognizing that θ1, θ2, and θ3 are linear in the
parameters and hence linear regression can be readily
applied.

4. A COMPREHENSIVE SEMIPHYSICAL
MODELING EXPERIENCE

Having recognized that parameter estimation in semi-
physical modeling constitutes a regression problem,
students are then asked to perform a series of tasks that
comprise a comprehensive identification procedure.
These include:

(1) Experimental Design. Students are asked to use
the first-principles MATLAB/SIMULINK model
to design an informative experiment on the sys-
tem. The design consists of a series of step
changes of varying magnitude and duration that
are intended to highlight the nonlinear behavior
of the system and take into account the dom-
inant time dynamics. The experiment must not
exceed a 2 hr time period (the length of a recita-
tion session) and must avoid taking the sensors
and actuators past their limits. Figure 4 shows a
TDC3000 data screen for a typical experimental
run designed by the students. Various experi-
mental runs are performed during the course of
two weeks in the semester, and these are used to
serve as estimation and validation data sets for
the ensuing parameter estimation problem.

(2) Model structure selection and parameter esti-
mation. Students are then asked to develop a
Matlab program that uses regression analysis to
estimate parameters of the semiphysical model.

In addition to the three-parameter model struc-
ture shown in Equation 6, the program must also
estimate parameters for the following difference
equation model structures:

Four parameter model (Version A):

c(k) = θ4c(k−1) (8)

+θ1qc(k−1)cc(k−1)

+θ2qc(k−1)c(k−1)

+θ3qw(k−1)c(k−1)

Four parameter model (Version B):

c(k) = c(k−1) (9)

+θ1qc(k−1)cc(k−1)

+θ2qc(k−1)c(k−1)

+θ3qw(k−1)c(k−1)+θ4

Five parameter model:

c(k) = θ4c(k−1) (10)

+θ1qc(k−1)cc(k−1)

+θ2qc(k−1)c(k−1)

+θ3qw(k−1)c(k−1)+θ5

The “four parameter” and “five parameter” mod-
els have more degrees of freedom and there-
fore allow greater flexibility in improving the
goodness-of-fit as compared to the “three-parameter”
difference equation.

(3) Model Validation. Ultimately, the goal of model
validation is to determine the model structure and
parameters leading to predictions that are both
physically meaningful and result in lower errors
when compared on a validation data set (i.e., a
data set other than the one used for estimation).
The semiphysical model estimates are compared
against each other and against the responses ob-
tained from the first-principles model (in both
continuous-time and difference equation form).
In addition, students are asked to compute, dis-
play, and plot the maximum and Root-Mean-
Square (RMS) errors for both the estimation and
crossvalidation data sets. The RMS and maxi-
mum errors are determined on the basis of the
residual time series

eresid(k) = c(k)− ĉ(k) (11)

k = 1, · · · ,N
which is the difference between the measured
concentration (c(k)) and that estimated from a
model (ĉ(k)). N is the total number of observa-
tions in the data set. The RMS error is computed
as

RMSerr =

(
1
N

N∑
k=1

e2resid(k)

)1/2

(12)



while the maximum error consists of the largest
absolute magnitude in the residuals, determined
by

MAXerr = max
k
|eresid(k)| (13)

k = 1, · · · ,N
(4) Reflection. Determining which model (semi-

physical or first-principles) is “best” is not enough.
Students are asked to examine their experience
with the system and list all possible sources of
error and prioritize them in order of importance.
The inquisitive student will recognize problems
related with the calibration of measurements,
the relative effect of the simplifying assump-
tions, and similar circumstances. Ultimately, the
students realize the importance of semiphysical
modeling and of working with data as a valuable
tool in modeling.

An illustration of the various steps with some rep-
resentative test data sets is shown in Figures 5
through 12. These plots are generated using the
Matlab/SIMULINK files developed by the students
throughout the course of the semester. Estimation data
(consisting in this case of one step change each for
the inlet brine and fresh water flows) is shown in
Figures 5 and 6. The relative agreement between the
first principles and 3-parameter semiphysical model
results can be seen in Figure 5. Simulation results that
include the two four-parameter models and the five-
parameter model are shown in Figure 7. All semiphys-
ical models closely agree, and as reflected in the RMS
values (Figure 8), increasing the number of parameters
yields improved goodness of fit in the estimation data
set. Parameter estimates are presented on the Matlab
command window and compared to first-principles
coefficients; Figure 9 shows the values obtained for
the four-parameter model (Version A). Simulation re-
sults on the validation data set (Figure 10) indicate
that this model has the best predictive ability over all
the evaluated models. This is reflected in both a better
visual fit in the simulation as well as superior RMS
and MAX errors (Figures 11 and 12, respectively).

5. SUMMARY AND CONCLUSIONS

The brine-water mixing tank is a relatively simple
experiment that, while originating from the field of
chemical engineering, can be readily taught to stu-
dents across disciplines. The experiment described in
this paper exposes students to significant concepts
in modeling, identification, and numerical comput-
ing in a challenging experimental and real-time in-
formation setting. Semiphysical modeling is intro-
duced in a meaningful way while demanding only
a modest mathematical background from students:
knowledge of differential equations, basic numerical
methods, and regression analysis. Copies of the Mat-
lab/SIMULINK files implementing this procedure (as

well as some sample data files) can be obtained by re-
quest from the author at (daniel.rivera@asu.edu).
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Fig. 1. Brine-water mixing tank schematic (top) and
photograph (bottom).
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Fig. 2. SIMULINK window for Brine-Water Mixing Tank First-Principles Model

Fig. 3. Representative cluster of Universal and Global
User Stations for ASU’s TotalPlant Solution Sys-
tem.

Fig. 4. Estimation data collected from the mixing tank,
shown on a Honeywell TPS group display
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Fig. 5. Output time series for the estimation data set.
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Fig. 7. Simulation results on the estimation data set for
the first-principles and semiphysical models.
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Fig. 8. RMS error comparison on the estimation data
set.

Four Parameter Model - Ver A
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Estimation Data Results
RMS error = 0.022619
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Validation Data Results
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MAX error = 0.46546

Fig. 9. Parameter estimates for the four-parameter
semiphysical model (Version A), compared with
coefficients obtained from first-principles.
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Fig. 10. Simulation results for the validation data set.
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Fig. 11. RMS error comparison on the validation data
set.
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Fig. 12. MAX error comparison on the validation data
set.




