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Abstract

Control engineering is the field that examines how to transform dynamical system behavior from
undesirable conditions to desirable ones. Cruise control in automobiles, the home thermostat, and
the insulin pump are all examples of control engineering at work. In the last few decades, signifi-
cant improvements in computing and information technology, increasing access to information, and
novel methods for sensing and actuation have enabled the extensive application of control engi-
neering concepts to physical systems. While engineering control principles are meaningful as well
to problems in the behavioral sciences, the application of this topic to this field remains largely
unexplored.

This technical report examines how engineering control principles can play a role in the be-
havioral sciences through the analysis and design of adaptive, time-varying interventions in the
prevention field. The basic conceptual framework for this work draws from the paper by Collins et
al. (2004). In the initial portion of the report, a general overview of control engineering principles
is presented and illustrated with a simple physical example. From this description, a qualitative
description of adaptive time-varying interventions as a form of classical feedback control is devel-
oped, which is depicted in the form of a block diagram (i.e., a control-oriented signal and systems
representation).

A simulation study of a hypothetical adaptive, time-varying intervention based on the Fast Track
program is then presented. The results of a rule-based decision policy (similar to that proposed
in Collins et al. (2004)) are compared to a Proportional-Integral-Derivative (PID)-type controller
designed on the basis of model-based engineering control principles. The simulations are conducted
under conditions of varying disturbance magnitudes, stochastic measurement error, and nonlinearity
in the model parameters. While the rule-based approach is adequate under conditions of low
disturbances, it faces problems of offset for large disturbance magnitudes and nonlinearity. The PID
controller tuned using the principles of Internal Model Control does not exhibit these difficulties;
however, this controller has an adjustable parameter λ that must be judiciously selected to achieve
the proper tradeoff between a desired response in the tailoring variables and high variability and
“aggressiveness” in the assigned intervention dosages.

In light of this analysis and the simulation study, a series of systems technologies that may
be meaningful in future research activities on this problem are presented; these are dynamical
modeling via system identification, Model Predictive Control, Model-on-Demand estimation, and
the integration of Model-on-Demand estimation with Model Predictive Control. It is anticipated
that the development of control approaches for time-varying, adaptive interventions will establish
the basis for novel forms of control technnology involving the effective integration of data-centric
estimation, hybrid decision-making, and constrained control.
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1 Introduction

Control engineering, in a broad sense, refers to the discipline that examines how to transform
dynamic system behavior from undesirable conditions to desirable ones. Cruise control in automo-
biles, the home thermostat, and the insulin pump are all examples of control engineering at work.
In the last few decades, significant improvements in computing technology, increasing access and
availability to information, and novel methods for sensing and actuation have enabled the extensive
application of control engineering concepts to physical systems. Engineering control principles are
applicable as well to problems in the behavioral sciences, yet this potential remains untapped. One
area where engineering control principles can be applied productively is the analysis and design
of time-varying, adaptive interventions (Collins et al., 2004). We argue that this represents an
important, significant and meaningful problem that can open new avenues in the application of
control engineering to the behavioral sciences.

Adaptive interventions represent a promising approach to prevention and treatment. They are
especially useful for prevention programs with numerous components aimed at different aspects
of risk, and for treatment of chronic, relapsing disorders such as alcoholism, cigarette smoking,
and other types of substance abuse. Contingency management, individualized treatments, stepped
care programs, and case management all represent frameworks that enable the implementation of
adaptive interventions. Adaptive interventions individualize therapy by the use of decision rules
for how the therapy level and type should vary according to measures of adherence, treatment
burden, and response collected during past treatment (MC-DATS, 2004). Table 1 contains a list
of useful definitions relating to this problem. Adaptive interventions differ from conventional fixed
interventions in significant ways. In fixed interventions, the same dosage is applied to all program
participants without taking into account any of their individual characteristics. In an adaptive
intervention, different dosages of prevention or treatment components are assigned to different
individuals across time, with dosage varying in response to the needs of the individual. For example,
the composition of a drug abuse prevention program might be varied somewhat depending on the
ethnic make-up of each school in which it is delivered. Adaptive interventions are time-varying when
the adaptation is repeated throughout the intervention. For example, a smoking cessation program
may periodically assess each participant’s progress along the stages of the Transtheoretical Model
(Velicer and Prochaska, 1999), and accordingly adjust how key components of the intervention
are presented. While adaptive interventions may on the surface appear similar to sensible clinical
practice, in order to be successful, they must be much more tightly managed than typical clinical
procedures. Interest in adaptive techniques is significant not only in the treatment of substance
abuse (Sobell and Sobell, 1999; Velicer and Prochaska, 1999; Brooner and Kidorf, 2002; Murphy
and McKay, Winter 2003/Spring 2004) but also in the treatment of hypertension (Glasgow et
al., 1989), depression (Rush et al., 2004), Alzheimer’s disease (Schneider et al., 2001) and infectious
diseases (Rosenberg et al., 2000). As adaptive strategies play an increasingly prominent role as a
methodological framework for many important prevention problems, it is evident that much research
is needed on analysis, design, and effective implementation of these interventions.

Consider a hypothetical adaptive intervention, inspired by the Fast Track program (CPPRG,
(1992; 1999a; 1999b)), which will serve as the basis for a number of example problems described in
this report. The long-range purpose of the intervention is to prevent the development of conduct
disorders in children. The intervention is family counseling. There are several possible levels of
intensity, or doses, of family counseling. The idea is to vary the doses of family counseling depending
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Table 1: Definitions adapted from material prepared for the Methodological Challenges in Devel-
oping Adaptive Treatement Strategies network (MC-DATS, 2004).

Phrase Definition
Adaptive treatment strategies These strategies individualize therapy by the use of decision rules for how

the therapy level and type should vary according to measures of adherence,
treatment burden and response collected during past treatment. Adap-
tive treatment strategies do not involve randomization; other names are
stepped care models, dynamic treatment regimes, structured treatment in-
terruptions, treatment algorithms and adaptive interventions.

Design of a Treatment A treatment that might be implemented in clinical setting, e.g., provide 3
hours of counseling per week for 1 month. An adaptive treatment strategy
is one type of treatment design. Does not involve randomization.

Design of an Experimental Trial Statistical design of an experiment, usually involving randomization. The
treatments to which a subject may be randomized may be constrained by
preference, response to past therapy, side effects suffered from past therapy,
etc. An experimental design is used to develop and/or evaluate different
treatment designs.

Index These might be risk indices or response indices. An index is a summary of
the available information that is strongly predictive of future behavior or
disease. For example, a risk index that includes results of biological tests
and psychosocial factors may be highly predictive of future substance use.

Tailoring Variable A tailoring variable is also a summary of the available information. However
as opposed to an index, the primary purpose of a tailoring variable is to
discriminate between different timings of treatment alterations or different
intensities of treatment or different treatments. Since the purposes of a
tailoring variable and an index differ (discrimination versus prediction),
they may summarize similar information but they might not. Of course
sometimes a good risk index is also a good tailoring variable but this need
not be the case.

on the need of the family, in order to avoid both providing an insufficient amount of counseling
for very troubled families and wasting counseling resources on families that do not need it. The
decision about which dose of counseling to offer each family is based on two factors. One is the
family’s level of functioning, assessed by a family functioning questionnaire completed by one of the
parents. The score on the family functioning questionnaire is called a tailoring variable, because
it is used to tailor the treatment to the individual family. The other factor is the judgment of a
clinician familiar with the family’s case. Based on the questionnaire and the clinician’s assessment,
family functioning is determined to be very poor, poor, near threshold, or at/above threshold. The
decision rule is as follows: families with very poor functioning are given weekly counseling; families
with poor functioning are given biweekly counseling; families with below threshold functioning
are given monthly counseling; and families at or above threshold are given no counseling. Family
functioning is reassessed every three months, at which time the intervention dosage may change.
This goes on for three years, with twelve opportunities for a dose of family counseling to be assigned.
The final outcome of interest is a measure of conduct disorder in the target child, assessed one year
after the end of the intervention period.

During the past two years, the authors have held some intriguing discussions on the topic of the
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report. In these discussions we have identified conceptual linkages between adaptive, time-varying
interventions in the prevention field and engineering process control. Process control systems are
widely used in the chemical industries to adjust flows to maintain level and product compositions at
desired values (Ogunnaike and Ray, 1994). Effective time-varying adaptive interventions have goals
similar to those of well-designed process control systems, in that both seek to 1) reduce negative
effects, 2) increase intervention potency and 3) reduce waste. We believe that control engineering
represents an exciting and very promising new framework for development of methodology for
adaptive, time-varying interventions. The objective of this technical report is to examine the links
between these fields, with the ultimate goal of developing novel and effective intervention strategies
based on engineering control principles.

The report is organized as follows: Section 2 describes some control engineering fundamentals
and introductory background in this field. Section 3 considers the link between adaptive, time-
varying interventions and engineering control by examining the hypothetical Fast Track intervention
described previously. An extensive simulation study is presented that contrasts a rule-based decision
policy with a model-based approach based on engineering control principles. Section 4 describes
some systems and control technologies that we believe would be applicable in future research on
this problem. Section 5 summarizes the findings and observations of this report, as well as some of
the fundamental challenges associated with this research.

2 Control Engineering Fundamentals

Control engineering is a broadly applicable field that has become a significant part of every day life.
Many items that form part of our modern existence (such as automobiles, airplanes, and consumer
appliances) rely on well-designed control systems to enable safe, profitable, and environmentally
friendly operation. Control engineering is a subject that is included in the program of study of
most engineering fields (aerospace, biomedical, chemical, electrical, industrial, and mechanical, to
name a few). In much of the remainder of this report, many terms new to behavioral scientists will
be introduced. Table 2 presents a list of definitions that will be useful in understanding this topic.

Feedback control represents one of the most useful and commonplace forms of control strategies
applied in industrial practice. We can illustrate the concept of a feedback control system with
a simple example from everyday life: taking a shower. Think of your ideal shower, with your
preferred temperature and water flow. When you are taking a shower you control these features
(see Figure 1) by using the hot and cold taps. In control theory language, you are the controller, and
temperature and water flow are the outputs. In this example the outputs are controlled variables,
and the particular temperature and water flow desired are the setpoint values. The purpose of the
feedback control system is to keep the controlled variables as close as possible to the setpoints, or
in this case, to keep the temperature and water flow as close as possible to your ideal settings.
Manual feedback control of a shower as described here mimics conventional clinical practice in that
a clinician decides on dosages and treatment based on his/her judgement of the current state of
the patient, and the history of treatment.

There are two general types of inputs in feedback control systems. One is manipulated variables,
which can be adjusted by the controller to achieve the desired effect. In our example these are the
hot and cold taps. The other is disturbance (or exogenous) variables, that induce changes in the
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Table 2: Fundamental Control Engineering Terminology

Phrase Definition
Adaptive Control A body of control engineering that considers mechanisms for updating model and/or

controller parameters as these change with operating conditions. To be distin-
guished from an adaptive intervention, where the term adaptive implies the presence
of feedback control.

Block Diagram A graphical representation of the signals and systems that comprise a closed-loop
control system.

Closed-loop Refers to system behavior once a controller/decision policy is implemented.
Controller A mathematical set of relationships that translate error (i.e., deviation from a goal

or setpoint) into settings for a manipulated variable (which defines an intervention
dosage). Also referred to as a decision policy or decision rule in the context of this
report.

Control Engineering The science that considers how to manipulate system variables in order to transform
dynamic behavior to desirable from undesirable.

Control Error (e = r − y) The difference between the controlled variable and the setpoint; the ultimate goal
of a control system is to take this variable to zero.

Control Loop Refers to a closed-loop system.
Control Structure Refers primarily to whether feedback or feedforward strategies (or their combina-

tion) are applied in a closed-loop system.
Controlled Variables (y) System variables that we wish to keep at a reference value or setpoint (r).
Disturbance Rejection Refers to the ability of the control system to manipulate system variables such

that the controlled variable is kept as close as possible to the setpoint, in spite of
significant changes in the disturbance variables.

Disturbance Variable (d) A system variable that influences the controlled variable response, but cannot be
manipulated by the controller; disturbance changes occur external to the system
(hence sometimes referred to as exogeneous variables).

Feedback control A control strategy in which the a controlled variable (y) is examined and compared
to a reference value or setpoint (r). The controller issues actions (decisions on the
values of a manipulated variable (u)) on the basis of the discrepancy between y and
r.

Feedforward control A control strategy in which changes in a disturbance variable (d) are monitored and
the manipulated variable (u) is chosen to counteract anticipated changes in y as a
result of d.

Manipulated Variable (u): System variable whose adjustment influences the response of the controlled variable
y; the magnitude of u is determined by the controller.

Open-loop Refers to dynamical system behavior without a controller or decision policy.
Offset A sustained discrepancy between the controlled variable response and the setpoint

in a closed-loop system.
Process The dynamical system under study, for which a closed-loop controller or decision

rule will be applied.
Setpoint Tracking refers to the ability of the control system to manipulate system variables such that

the controlled variable follows a reference (setpoint) trajectory as closely as possible.

controlled variables that keep them from attaining the setpoint values. There are many possible
sources of disturbances in this example, among them ambient temperature changes, fluctuations in
the operation of the home water heater, abrupt changes in the water flow sources to the shower
(for instance, yard sprinklers going off or a nearby toilet being flushed).
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Figure 1: Person in the shower: an everyday control problem.

It is customary in control engineering to depict feedback control problems in a block diagram like
the one in Figure 2 related to the shower example. The quantities discussed above are represented
in the block diagram as follows:

• The vector of output variables, y (temperature and water flow);

• The vector of setpoint values, r (preferred values for temperature and water flow);

• The vector of error signals, e, which are the differences between output variables and setpoint
values (differences between water temperature and preferred temperature, and between water
flow and preferred water flow);

• Manipulated input variables, u (hot and cold taps);

• Disturbance input variables, d (fluctuations in water heater etc.).

• C represents the controller; this could either be the person taking a shower (akin to clinical
judgement) or in an automatic closed-loop system, a set of decision rules or similar algorithm.

• P represents the effect of the manipulated variables u on the output variables y in the absence
of any disturbance variables (the effect on water temperature and flow of manipulating the
taps if there were no fluctuations in the water heater, etc.).

• Pd represents the effect of the disturbance variables d on the output variables y in the absence
of any manipulated variables (the effect on water temperature and flow of fluctuations in the
water heater, etc. if no one was manipulating the taps).
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(a) Block Diagram

(b) Legend

Figure 2: Block diagram representation of the closed-loop system entailed in shower operation.
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• The symbol (arrow) represents a signal (e.g., a measure of water temperature and flow).

• The symbol (signal summing junction) represents the addition of two or more signals.

Let us work through the process depicted in Figure 2 from left to right and back again, following the
arrows. The designated setpoint vector r (representing desired settings for temperature and water
flow) are specified externally . The signal which contains the measured values for temperature and
water flow y is compared to the setpoints to obtain the error signal e. The controller (or decision
rule) C uses the measured and error signal to decide on values for the manipulated variables u,
that is, the settings for the hot and cold taps. P , the “open-loop” model, expresses the effect this
has on water temperature and flow. The actual water temperature and flow are also altered by
the disturbance Pd; as a result the actual values of the controlled variables y include the effects of
both manipulated variable and disturbance changes. The action of the control system is conducted
continuously in time; in a well-designed control system, the controller/decision rule continues to
suggest changes in u until the control error e is minimized.

Figure 3: Time series representing the effects of control action in a stochastic disturbance setting.
From time = 0 to 2000, the system is in open-loop (manual) operation, with no changes made to
the manipulated variable. Closed-loop (automatic) feedback control is engaged at time = 2000.
The transfer of variance from the controlled variable to the manipulated variable as a result of
feedback control action is clearly illustrated.

2.1 Representing Control Problems using Systems of Equations

In this section we show how to represent control problems by means of systems of equations.
In a manual control setting, the individual taking the shower senses what he or she believes is
an adequate water flow and temperature, and makes adjustments accordingly. Manual control is
somewhat challenging for this system because of the transportation delay created by the long pipe
between the hot and cold water valves and the shower head. For simplicity we consider a single-
variable problem with one output signal y(t) (shower temperature), one manipulated variable u(t)
(hot water valve position), and one disturbance variable d(t) (ambient temperature changes). This
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is an open-loop system. Unlike the shower example, an open-loop system does not have a controller.
A dynamical model that can describe the system dynamics as a result of arbitrary changes in these
inputs is written as a first-order continuous-time differential equation as follows:

τ
dy

dt
+ y(t) = Kp u(t− θ) +Kd d(t) (1)

Equation (1) can be derived on the basis of physical conservation of mass and energy in the system.
The system dynamics are characterized by τ , the time constant, Kp and Kd the process and
disturbance gains, respectively, and θ, the time delay. Details of the derivation are not presented
here, but it can be shown that the values for τ , Kp, Kd, and θ are determined by the length and
width of the pipe, the volume in the shower head, the heat capacities of the materials and other
physical attributes of the shower. An equivalent representation of the model per Equation (1) in
the Laplace domain (s) leads to the transfer functions P (s) and Pd(s):

y(s) = P (s)u(s) + Pd(s)d(s) (2)

P (s) =
Kp e

−θs

τs+ 1
(3)

Pd(s) =
Kd

τs+ 1
(4)

To meet the operational goals of setpoint tracking and disturbance rejection, it is necessary to
“close the loop”, that is, to introduce some form of automatic control. In setpoint tracking, the
controller determines the position of the manipulated variables to take the controlled variables from
an initial setting to a final desired goal. For instance, the process of starting the shower from an
initial closed (or shutdown) state to one in which the desired final temperature setting is reached is
one example of setpoint tracking. The second goal, disturbance rejection, describes the adjustments
made by the control system to address the effect of disturbances (such as ambient temperature
changes, unexpected flow variations , and so forth) on the total water flow and temperature in the
shower.

A closed-loop system consists of a controller as well as the required sensors and actuators.
Sensors represent devices or mechanisms that measure the controlled variables; these measurements
are potentially prone to errors. Controllers are mathematical relationships that act on the basis of
measurements of the controlled variables or other signals in the system to determine the settings
for the manipulated variables. Actuators translate the settings received from the controller into
final positions of the manipulated variable. Sensors and actuators are both “hardware” components
that need to be properly designed to obtain a well-performing control system.

It should be noted that feedback control is not the only control strategy available for this
problem. In feedforward control, changes in the disturbance variables (d) are measured and the
manipulated variable values (u) are chosen to counteract anticipated changes in y as a result of d.
In industrial practice, the majority of control systems are feedback-only, but combined feedforward-
feedback control systems are nonetheless commonplace. Regardless of the control strategy used, a
main objective of engineering control is the transfer of variability from an expensive resource (the
controlled variable) to a cheaper one (the manipulated variable). In the shower example, if we do
not attempt to control water temperature by adjusting the hot and cold taps, in other words, if
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essentially we have an uncontrolled open-loop system, the hot water valve remains constant while
water temperature fluctuates. Once control is introduced via adjustment of the taps, i.e., we move
to a closed-loop system, water temperature variability is greatly reduced while the hot water valve
position varies. This transfer of variance is critical to the important role that engineering-based
control systems play in industrial practice; Figure 3 illustrates this.

3 Extending Control Engineering Principles to the Behavioral Sci-
ences

3.1 A Qualitative Description Using Block Diagrams

Our first step is establishing how engineering control principles can be used to conceptually de-
scribe a time-varying, adaptive intervention is to develop a corresponding block diagram. We draw
on the discussion of adaptive, time-varying interventions per Collins et al. (2004). Prevention
and treatment data are nearly always longitudinal, which involves multiple variables interacting
in potentially complicated ways. The problem of how to capture the mathematical relationship
between intervention and outcome(s) in a manner meaningful for control design represents a sig-
nificant challenge. We noted previously that engineering control systems are traditionally applied
to physical systems where the principles of conservation of mass, energy, charge, and momentum
are used as the basis for describing phenomena. Problems in the prevention field are not so eas-
ily characterized, and furthermore, these systems display behavior that can be highly nonlinear,
uncertain, and stochastic. Nonetheless, we capture this relationship in an abstract setting with a
model block as shown in Figure 4.

We illustrate the nature and benefits of a process control understanding of adaptive, time-
varying interventions through a description of its application to the hypothetical Fast Track inter-
vention described in the Introduction. A block-diagram representation of the parental function-
home visit time-varying, adaptive intervention as an engineering feedback control system is shown
in Figure 4, and a table relating the intervention parameters to engineering control variables is
presented in Table 3. In this representation, the tailoring variable (a measured level of parental
function, denoted by the variable PFmeas(t), where the time variable t is expressed as an integer
value of a review interval T ) represents a controlled variable signal that is used by a feedback
controller (i.e., decision rules) to determine the dosage level of the intervention (in this case, the
frequency of home visits, denoted by the signal I(t)) based on a measured level of parental function.
The adaptive nature of the time-varying intervention implies that feedback control is taking place;
hence the term adaptive in the prevention field equates feedback (not to be confused with the
term adaptive control, which is a distinct area within the control engineering field). Disturbance
signals in this problem represent individual, time-varying characteristics that can deplete parental
function, and for purpose of this report will be lumped together into a depletion signal D(t). In
addition, we need to note the possibility of unreliability in the measurements; such “noise” in the
parental function measurement is captured via the signal N(t).

While the control-oriented representation depicted in Figure 4 is conceptual in nature, nonethe-
less it is extremely useful for articulating some fundamental questions on the design and implemen-
tation of adaptive, time-varying interventions; these are topics that merit additional investigation.
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(a) Block Diagram

(b) Legend

Figure 4: Block-diagram feedback control representation of a hypothetical home visits adaptive
component for the FAST TRACK program
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Among these questions are:

1. How can model-based engineering control design techniques enhance the development of deci-
sion rules for time-varying, adaptive interventions? Having developed models for prevention
phenomena that are relevant to control, the issue of how to systematically arrive at appro-
priate decision policies for these problems must be considered. In general, the sophistication
of the control laws will be dictated by the complexity of the model. In prevention prob-
lems, these control laws will likely be hybrid in nature, incorporating both continuous and
discrete-event decisions.

2. How reliably and frequently must the tailoring variable(s) be estimated, when the purpose
of the measurement is a time-varying adaptive intervention? Previous work by Collins and
Graham (2002) has demonstrated the importance of judicious selection of sampling time
when drawing inference in longitudinal studies of prevention phenomena. The requirements
for both measurement and modeling accuracy in a time-varying adaptive intervention will
be influenced by the performance expected from the control system. Furthermore, there are
additional issues related to how to translate potentially multiple outcomes into an estimate
for one or more tailoring variables.

3. What role do disturbances (i.e., individual time-varying characteristics) play in adaptive,
time-varying interventions, and to what extent can they be effectively managed by the actions
of the decision policy? Individual time-varying characteristics represent external (exogenous)
conditions that will influence how an individual (or a group of individuals) responds to an
intervention. These “disturbances” (which can be either measured or unmeasured) form
part of the control system and need to be effectively managed by the actions of a well-
designed adaptive time-varying intervention. Specifically, the control system must suppress
the deleterious effects of the detrimental disturbances, and take advantage of those that will
take the system to goal. If these disturbances are measurable, it is possible to enhance the
decision algorithm by incorporating them in a feedforward strategy in the control system, as
noted previously.

4. How can effective adaptive interventions be implemented in the presence of external clinical
actions? As noted in Figure 4 the clinician will ultimately make the final decision on dosage
levels in an intervention. An effective adaptive intervention should create a synergism between
decision rules and clinical judgement; however, being able to accomplish this will depend in
large part on the judicious design of the intervention.

3.2 A Simulation-Based Analysis

3.2.1 Open-Loop Model Definition

As a means to further understand the benefits of control systems engineering to adaptive interven-
tions in drug abuse prevention, we present the results of a simulation-based approach that allows us
to examine one possible means by which a process control perspective can be used to model preven-
tion phenomena, and develop decision rules for an adaptive intervention. In engineering systems,
conservation and accounting of extensive properties such as mass, energy, momentum, and charge
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Engineering Adaptive, Time-varying
Control Variable Intervention Variable

setpoint r(t) Goal or threshold on the
Measured Parental Function PFGoal(t)

output y(t) Measured
Parental Function PF (t)

disturbance Sources of
input d(t) Parental Function Depletion D(t)

manipulated Intervention
input u(t) Frequency of Home Visits I(t)

Table 3: Relationship with engineering control variables for the Fast Track adaptive time varying
intervention example.

serve as the basis for developing models that describe dynamical system behavior (Ogunnaike and
Ray, 1994). The general accounting principle is represented by the equation:

Accumulation = Inflow - Outflow + Generation - Consumption, (5)

The general accounting principle per (5) represents one possible approach to describe the “open-
loop” dynamics of phenomena occurring in prevention. For the Fast Track problem, we postulate
a difference equation model to model the relationship between home visits and parental function;
the model is written as follows:

PF (t+ T ) = PF (t) + KI I(t− θ) − D(t) (6)

D(t) =
nd∑
i=1

Di(t) (7)

PFmeas(t) = PF (t) + N(t) (8)

PF (t), PFmeas(t), I(t), D(t), and N(t) have been previously defined in this document; KI is the
intervention gain, while θ represents the time delay between the intervention and its actual effect
on parental function. The equation per (6) states that the parental function at the end of a review
period PF (t + T ) equals the parental function at the start of the review period PF (t) plus the
scaled effect of the intervention (implemented θ time units prior) less the depletion occuring during
that time period (D(t)). Equation (7) considers that the disturbance signal is a collective effect
of multiple (nd) individual time-varying characteristics. Equation (8) indicates that the parental
function measurement is potentially corrupted by error and unreliability, denoted by N(t).

A fluid analogy for this model is presented in Figure 5, which corresponds to a draining tank
being fed parental function (the “fluid”) from a potentially long pipe. In the fluid analogy, parental
function is accumulated as an inventory, which can either be depleted by disturbances, or re-
plenished by an intervention. The length of the pipe is proportional to the delay between the
intervention and tailoring variable. While particular disturbances could be beneficial in character
(i.e., a new job, leaving a bad neighborhood, a positive religious experience, etc.), for purposes of
this study we will treat the net sum of these disturbances (denoted by D(t)) as a depletion.
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Figure 5: Fluid analogy for the model and control system describing the hypothetical Fast Track
adaptive intervention. LT = level transmitter; CTL = feedback controller.

It is important to note that the model per (6) and (8) hints at some of the significant modeling
challenges associated with dynamically modeling prevention phenomena. The mechanisms by which
interventions translate into outcomes that define the tailoring variable will most likely be highly
stochastic and nonlinear in nature, both in KI and θ. Furthermore, the disturbance effects leading
to the depletion rate D(t) will have both deterministic and stochastic components; N(t), on the
other hand, will be principally a stochastic signal but may be subject to bias.

3.2.2 A Rule-Based Decision Policy

The decision rules described in the Introduction (henceforth referred to as the rule-based control
policy or rule-based controller) can be mathematically represented as follows:

• If the measured parental function is “Very Poor” (0 ≤ PFmeas(t) ≤ PF V ery Poor) then the
intervention dosage should correspond to weekly home visits (I(t) = Iweekly),

• If the measured parental function is “Poor” (PF V ery Poor < PFmeas(t) ≤ PFPoor) then the
intervention dosage should correspond to bi-weekly home visits (I(t) = Ibiweekly),

• If the measured parental function is “Below Threshold” (PFPoor < PFmeas(t) ≤ PFGoal)
then the intervention dosage should correspond to monthly home visits (I(t) = Imonthly),

Though not explicitly mentioned in Collins et al. (2004), we consider that if parental function is
meets or exceeds the goal (PFmeas(t) > PFGoal) then the intervention dosage should correspond
to no home visits (I(t) = 0). It should be recognized that the performance of the adaptive, time-
varying intervention will depend on the values selected for the threshold parameters PF V ery Poor,
PFPoor and PFGoal as well as the intervention potency reflected in the values of Iweekly, Ibiweekly,
and Imonthly.
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(a) D(t) = 0
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(b) D(t) = 1
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(c) D(t) = 2

Figure 6: Closed-loop response of the rule-based control system per Collins et al. with KI = 0.05,
θ = 0, T = 3 months, no measurement error (N(t) = 0 for all t) and increasing magnitude of
depletion.
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Figure 6 demonstrates the response obtained by applying an implementation of the rule-based
controller described in Collins et al. (2004) to the system per (6) under deterministic conditions with
KI = 0.05, θ = 0, T = 3 months for the review interval, no measurement error (N(t) = 0 for all t)
and no depletion (D(t) = 0 for all t). Both parental function PF (t) and intervention dosage I(t)
are considered as normalized measurements with values ranging from 0 to 100%. Settings for the
parental function thresholds are set to PF V ery Poor = 16.7%, PFPoor = 33%, and PFGoal = 50%;
the intervention potency is assumed to be linearly scaled and is defined according to Iweekly = 100%,
Ibiweekly = 66.7%, and Imonthly = 33%.

Initially, the subject is considered to possess 0% parental function with the intervention dosage
determined at t = 1 month and reviewed every 3 months thereafter for a 36 month total program.
As seen in Figure 6a, under these circumstances, the rule-based controller works as expected;
initially the rules dictate an intervention dosage of weekly home visits, with the frequency of visits
decreasing as the parental function of the family improves. At 16 months the estimated parental
function meets the goal, and remains there for the duration of the assigned time period for the
intervention. Because estimated parental function has achieved the goal, the rule-based policy
determines that there is no need for additional home visits and the intervention is concluded.

We consider the presence of nonzero depletion of parental function, and for the sake of simplicity
assume that the rate of depletion occurs at a constant value. Consider the case where D(t) =
1 for all t, as shown in Figure 6b. Under these circumstances it takes longer for parental function
to reach the goal (30 months) and the intervention dosages are on average higher than before and
never go to zero (since there is a constant loss of parental function per month). When the rate of
depletion is increased to D(t) = 2 for all t, the rule-based controller, while recommending higher
dosages, fails to attain the goal throughout the 36 months of the intervention. This unattainment
of the goal is referred to as “offset” in control engineering terminology, and is depicted graphically
in Figure 6c. Despite an overall increase in parental function in the family at the conclusion of the
intervention, the presence of offset is an undesirable phenomenon that results from the simplified
nature of the decision rules applied to this intervention.

3.2.3 A Decision Policy Based on Engineering Control Principles

In this subsection we examine how to apply a model-based design procedure stemming from en-
gineering control principles to arrive at a controller/decision policy for the hypothetical adaptive,
time-varying intervention previously described. A corresponding block diagram for a closed-loop
system using an engineering controller is presented in Figure 7. In general, the requirements for the
engineering controller are defined by the character and sophistication of the open-loop model, the
desired closed-loop performance characteristics, and the external signals (reference setpoints and
disturbances) that will be faced by the control system. There are multiple ways in which engineer-
ing control policies can be developed for systems with dynamics per (6). One approach towards
obtaining a model-based, engineering feedback control law in this case is to recognize that the model
per (6) corresponds to a delayed, integrating plant. The use of a first-order Padé approximation
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(a) Block Diagram

(b) Legend

Figure 7: Block-diagram for an engineering-based feedback control approach to the home visits
adaptive component for the FAST TRACK program
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on the delay leads to an integrating system with lag and a Right-Half Plane zero,

PF (s) = P (s) I(s) + Pd(s) D(s) (9)

=
e−θs

s
I(s)− 1

s
D(s) (10)

≈
−θ
2 s+ 1

s( θ2s+ 1)
I(s)− 1

s
D(s) (11)

The resulting model per (11) is thus amenable to the Internal Model Control (IMC) tuning rules
for Proportional-Integral-Derivative (PID) type controllers with filter

u(s)
e(s)

= C(s) = Kc(1 +
1
τIs

+ τDs)
1

(τF s+ 1)
(12)

as developed in Rivera et al. (1986) and Morari and Zafiriou (1989). The PID controller is one of
the most commonplace control algorithms in industrial practice; Kc is the proportional gain, τI is
the integral time constant, τD is the derivative time constant and τF the filter time constant for
this control algorithm. e(s) = r(s) − ym(s) is the error signal that denotes the magnitude of the
deviation between controlled variable and setpoint. An IMC-PID tuning rule corresponding to the
structure per (12) which results in no offset for ramp-like disturbances is:

β = τ =
θ

2
Kc =

2(β + λ) + τ
KI(2β2 + 4βλ+ λ2)

τI = 2(β + λ) + τ (13)

τD =
2τ(β + λ)

2(β + λ) + τ
τF =

βλ2
2β2 + 4βλ+ λ2

(14)

This tuning rule is model-based because the controller parameters Kc, τI , τD, and τF are all
defined on the basis of the open-loop model parameters (KI and θ) and an adjustable parameter λ
which can be used to determine the speed-of-response and to influence the peformance-robustness
tradeoff inherent to all feedback control systems. In general, λ is inversely proportional to the
closed-loop speed-of-response, that is, the speed it takes the controlled variable to reach the goal.
In general, increasing λ will result in less responsiveness of the manipulated variable to setpoint
and disturbance changes (thus making the closed-loop system sluggish), while decreasing λ will
promote more aggressive changes in the manipulated variable and lead to faster response in the
controlled variable.

The PID with filter controller per Equation (12) is written in continuous form, but needs to be
numerically discretized to be implemented in a sampled data environment (where measurements
are available only during specified review intervals T ). By using first-order backward-difference
approximations on the integral and derivative modes, the continuous-time PID controller per (12)
can be expressed as a difference equation, written as follows:

I(t) = I(t− T ) +K1e(t) +K2e(t− T ) +K3e(t− 2 T ) +K4(I(t− T )− I(t− 2T )) (15)

K1 =
TKc

τF + T

(
1 +

T

τI
+
τD
T

)
K2 = − TKc

τF + T

(
1 +

2τD
T

)
K3 =

KcτD
τF + T

K4 =
τF

τF + T
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(a) λ = 1
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(c) λ = 10

Figure 8: Closed-loop response comparison of the discrete-time IMC-PID control law for various λ
values in the case of constant one percent depletion per month (D(t) = 1)



24 Rivera and Pew (Arizona State), Collins (Penn State) and Murphy (U. of Michigan)

0 5 10 15 20 25 30 35
0

20

40

60

80

100
 Parental Function, PID control, D(k) = 1, Lambda = 3

 Months 

 %
 F

un
ct

io
n 

0 5 10 15 20 25 30 35

No Visits

 

Monthly

 

Bi−Weekly

 

Weekly

 Intervention (Frequency of Home Visits)

 Months 

 In
te

rv
en

tio
n 

D
os

ag
e 

Parental Function
Goal

(a)

0 5 10 15 20 25 30 35
0

20

40

60

80

100
 Parental Function, PID control, D(k) = 2, Lambda = 3

 Months 

 %
 F

un
ct

io
n 

Parental Function
Goal

0 5 10 15 20 25 30 35

No Visits

 

Monthly

 

Bi−Weekly

 

Weekly

 Intervention (Frequency of Home Visits)

 Months 

 In
te

rv
en

tio
n 

D
os

ag
e 

(b)

Figure 9: Closed-loop responses of the discrete-time IMC-PID control law for the case of one percent
depletion per month (D(t) = 1, left, (a)) and two percent depletion per month (D(t) = 2, right,
(b)). λ = 3 in both cases.

Here e(t) = R(t)− PFmeas(t) is the control error signal, which represents the discrepancy between
the measured parental function and a reference setpoint R(t) which is the desired goal of inter-
vention. As a result, the current dosage of the intervention is determined as the previous dosage,
plus some scaled corrections from the current and previous control errors (scaled according to the
controller tuning parameters K1, K2, K3, and K4). It should be noted that the controller per
(15) assumes that the intervention dosage is a continuous variable over a range (for instance, a
valve position that can assume any value between 0 and 100%). In this evaluation, we quantize
the intervention I(t) to correspond to the closest of one of the four dosage levels (Iweekly, Ibiweekly,
Imonthly, and 0). While quantizing the action of the PID controller in this way is somewhat ad
hoc, it does lead to acceptable results (as will be noted in the discussion of the simulation cases
in the ensuing paragraphs) and motivates the need for developing controllers for this problem that
include discrete-event decision-making (as in discussed in Section 4).

We first examine the effect of changing λ on the response of parental function and intervention
dosages for the hypothetical Fast Track problem using the same gain (KI) and delay (θ) parameters
as before. Closed-loop responses for three values of λ (λ = 1, 3, and 10) are presented in Figure 8.
λ = 1 represents the most aggressive tuning settings (Figure 8a). While parental function is close
to goal after 13 months, over the life of the intervention, the controller makes dosage assignments
that jump from weekly visits to no visits (and back to weekly) in successive review intervals. Such
drastic dosage changes may have detrimental effects and may be deemed unacceptable by clinical
personnnel. On the other hand, setting λ = 3 (Figure 8b) leads to much more gradual dosage
changes while resulting in parental function reaching the goal in a similar amount of time as when
λ = 1 (around 16 months). For this value of λ, the effectiveness of the intervention is essentially
the same as before, but without the erratic changes in intervention dosage. Increasing λ further
to λ = 10 significantly reduces the potency of the intervention, since no dosages beyond bi-weekly
visits are applied. The concomitant effect is a reduction in the speed-of-response and a longer time
to reach goal (21 months versus 16 months for λ = 3), as seen in Figure 8c.
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Figure 10: Closed-loop response comparison of the rule-based decision policy in the case of constant
one percent depletion per month (D(t) = 1) under stochastic measurement error.

As an adjustable design parameter, the final value for λ will be determined by clinician prefer-
ences and any requirements imposed by the problem. From the responses presented in Figure 8, it
would appear as λ = 3 represents an appropriate balance between the parental function response
and the dosages applied in the intervention. It is interesting to compare the IMC-PID controller
response to that of the rule-based controller for different values of the depletion rate D(t). The
IMC-PID response clearly outperforms the rule-based policy (with a much shorter settling time)
in the case of D(t) = 1 (Figure 9a), and is able to eliminate the offset that plagued the rule-based
control system in the case of D(t) = 2 (Figure 9b). An explanation for why the IMC-PID controller
is able to eliminate the offset under higher rates of depletion can be attributed to two factors: 1)
the IMC-PID controller acts on current and lagged values of the error signal (the difference between
measurement and goal) as opposed to just the current measurement in the rule-based system, and
2) both the choice of controller structure and tuning parameters is model-based, so the character
of the depletion effect is systematically recognized in the control algorithm.

In addition, we evaluate a scenario in which measurement noise N(t) is introduced as a uniform
zero-mean white noise signal with magnitude between 1 and −1. The response of the rule-based
controller for D(t) = 1 is presented in Figure 10 and can be compared to the results of the IMC-
PID controller under different settings of λ, as shown in Figure 11. The same realization of the
measurement noise is applied in all cases. From these simulations, one is able to observe that
a consequence of increasing λ is a reduction in the sensitivity of the intervention to noise. By
comparing the intervention dosages calculated in Figures 8 and 11, one is able to see that the least
discrepancy occurs when λ = 10. However, the price to be paid for this reduced sensitivity to the
noise signal is a more sluggish closed-loop response and a less agressive intervention in general.

The final scenario we consider is to apply a nonlinear gain relationship in KI . This is accom-
plished by expressing (6) as

PF (t+ T ) = PF (t) + KI(PF ) I(t− θ) − D(t) (16)
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(a) λ = 1
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(b) λ = 3
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(c) λ = 10

Figure 11: Closed-loop response comparison of a discrete-time IMC-PID control law for various
λ values in the case of constant one percent depletion per month (D(t) = 1) under stochastic
measurement error.
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Figure 12: Graphical depiction of the nonlinear gain relationship per (17) for KI .
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(b)

Figure 13: Closed-loop response comparison of the rule-based control system per Collins et al. (left,
(a)) and a discrete-time IMC-PID control law with λ = 3 (right, (b)) for the case of one percent
depletion per month (D(t) = 1), with nonlinearity in KI per (17).
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where the magnitude of KI is dependent on the value of the parental function. In this scenario we
examine a nonlinear gain relationship described by the formulas

KI = beaPF (t) + c (17)

c = Kmax − b b = (Kmin −Kmax)/(e−a − 1)

A plot of (17) for Kmax = 0.1, Kmin = 0.02, and a = 10 are shown in Figure 12. Such a nonlinear
relationship could describe, for instance, the possibility that higher functioning parents may receive
lesser benefits from an intervention than lower functioning ones. The rule-based and IMC-PID
controllers (tuned for λ = 3 and with a nominal setting of KI = 0.05 as before) are contrasted in
Figure 13. It is interesting to note that significant offset occurs in the rule-based case, while the
engineering control policy is able to apply higher intervention dosages to take the system to goal.

4 Description of Applicable Systems Technologies

The discussion of the simulation examples in the previous section indicates that control engineering
provides a systematic, quantitative framework for understanding adaptive, time-varying interven-
tions. Control design techniques in particular can be used to develop novel decision policies for
adaptive, time-varying interventions on the basis of a postulated model describing the relationship
between interventions and tailoring variables. This section provides brief descriptions of some con-
trol engineering topics that promise to be useful in the pursuit of this work. Specifically we address
the topics of system identification, Model Predictive Control, and Model-on-Demand estimation
combined with Model Predictive Control.

4.1 System Identification

System identification refers to the field of study that is concerned with the modeling of dynamical
systems from experimental data. A block diagram is shown in Figure 14. In the system identification
problem, records of input and output data from the plant are used to obtain a dynamical model that
best approximates the system under study. Black-box models obtained from system identification
experiments are used in many fields, and are among the most common form of dynamical models
used for advanced control purposes in the chemical industries.

System identification is traditionally broken down into four sub-steps: 1) experimental planning
and execution, 2) data preprocessing and model structure selection, 3) parameter estimation and
4) model validation. As noted in Figure 15 (Lindskog, 1996), system identification in practice is an
iterative procedure. The lack of a priori information regarding the plant model will require that
initially each step be examined in a superficial manner. After each stage, the user must discern if
the previous stages were properly accomplished; if this is not the case, the stage(s) must be redone
until a satisfactory model is obtained. A satisfactory model is one that meets the requirements of
the intended application (e.g., simulation, prediction, or control).

There are a number of very good texts in system identification (Ljung, 1999; Ljung and
Glad, 1994) and good software for evaluating classical identification methods (e.g, the System
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Figure 14: General block diagram for the system identification problem.
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Figure 15: System Identification Loop, per Lindskog (1996) (reproduced with permission).
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Identification toolbox in Matlab). While a system identification viewpoint is merited for this prob-
lem, the highly stochastic and nonlinear character of the phenomena associated with prevention
problems, as well as the difficulties associated with measurement, pose significant challenges for
traditional identification techniques. Extensions of identification techniques to address these diffi-
culties merit further investigation.

System identification techniques have the potential to influence the development and dissem-
ination of effective adaptive interventions in significant ways. Among these is the use of insights
generated from system identification into the design of experimental trials geared for adaptive in-
terventions, and the use of “control-relevant” identification to obtain simple yet useful models from
data for the construction of decision rules. In experimental design for system identification, the
concern is to decide on the appropriate sequence of inputs of the system so that the output mea-
surements display sufficient information to properly estimate a model of the system dynamics. The
system identification literature defines the concept of “persistence of excitation” (Ljung, 1999) to
characeterize an input signal rich enough to generate an informative model estimate. In practice,
however, time and operating constraints are considerations that must be factored in the design
of a suitable input signal and subsequent experimental trial. To this end, the concept of “plant-
friendliness” in system identification has been developed (Rivera et al., 2003). A plant-friendly test
will produce data leading to a suitable model within an acceptable time period, while keeping the
variation in both input and output signals within user-defined constraints. How to contextualize
the notion of plant-friendly identification testing to problems in prevention and treatment in be-
havioral health represents an open research problem. Of particular interest is the interplay between
these ideas and the design of sequential multiple assignment randomized (SMAR) trials, which are
currently being evaluated by Collins et al. (in press) and Murphy (in press) in the context of
adaptive interventions.

4.2 Model Predictive Control

Model Predictive Control (MPC) stands for a family of methods that select control actions based
on on-line optimization of an objective function. MPC has gained wide acceptance in the chemical
and other process industries as the basis for advanced multivariable control schemes (Prett and
Garćıa, 1988; Camacho and Bordons, 1999; Qin and Badgwell, 2003). In MPC, a system model
and current and historical measurements of the process are used to predict the system behavior at
future time instants. A control-relevant objective function is then optimized to calculate a sequence
of future control moves that must satisfy system constraints. The first predicted control move is
implemented and at the next sampling time the calculations are repeated using updated system
states; this is referred to as a Moving or Receding Horizon strategy (as illustrated in Figure 16).

Model Predictive Control represents a general framework for control system implementation
that accomplishes both feedback and feedforward control action on a dynamical system. The
appeal of MPC over traditional approaches to feedback and feedforward control design include 1)
the ability to handle large multivariable problems, 2) the explicit handling of constraints on system
input and output variables, and 3) its relative ease-of-use. In this latter category, MPC represents a
completely “time-domain” technology that avoids the cumbersome closed-form solutions associated
with classical optimal control and some modern approaches (such as H2 and H∞ control).

The goal of the MPC decision policy is to seek a future profile for u, the manipulated variables,
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Figure 16: Moving horizon representation of Model Predictive Control.

that brings the system variables to some desired conditions per the minimization of an objective
function. There is significant flexibility in the form of the objective function that can be used in
MPC; a meaningful formulation for the adaptive, time-varying intervention problems considered in
this technical report is as follows:

min
∆u(t|t)...∆u(t+m−1|t)

J (18)

where the individual terms of J correspond to:

Keep Controlled Variables at Goal Penalize Changes in the Intervention Dosages

J =

︷ ︸︸ ︷
p∑
�=1

Qe(!)(ŷ(t+ !|t)− r(t+ !))2 +

︷ ︸︸ ︷
m∑
�=1

Q∆u(!)(∆u(t+ !− 1|t))2 (19)

Maintain Intervention Dosages at Desired Targets

+

︷ ︸︸ ︷
m∑
�=1

Qu(!)(u(t+ !− 1|t)− utarget(t+ !− 1|t))2

The objective function in MPC is a multi-term expression that can be used to address the main
operational objectives in an adaptive, time-varying intervention:
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1. A setpoint tracking term that is intended to maintain controlled variables (which could be
either tailoring variables, outcomes, or their combination) at user-specified targets over time.
These targets need not be constant and can change over the prediction horizon p.

2. A move suppression term that penalizes successive changes (also referred to as moves) in the
intervention dosages. Move suppression also serves an important control-theoretic purpose as
the primary means for achieving robustness in the controller in the face of uncertainty (Prett
and Garćıa, 1988); the larger the weight on the move suppression, the greater the emphasis
in the control system to not introduce any changes in the assigned dosages. Such control
action may also be desirable to clinical personnel, who may not want to see drastic changes
in dosage recommendations from the intervention between review intervals.

3. An input target term that is meant to maintain the intervention dosages close to desired pre-
determined target values (such as those that may be associated with a fixed intervention).

The emphasis given to each one of the sub-objectives in (19) (or to specific system variables within
these objective terms) is achieved through the choice of weights (Qe(!), Q∆u(!), and Qu(!)); these
can potentially vary over the move and prediction horizons (m and p, respectively). Constraints
are an important feature of most real-life control problems, and the ability to address these ex-
plicitly in the controller formulation is part of the significant appeal of MPC. Constraints can be
imposed on the magnitudes of the intervention dosages, the changes in these dosages, tailoring
variables and outcomes, and similar system variables. For an MPC problem with an objective
function per (18)-(19), relying on linear discrete-time state-space models to describe the dynam-
ics, and subject to linear inequality constraints, a numerical solution is achieved via quadratic
programming. However, depending on the nature of the objective function, model and constraint
equations, other programming approaches (linear programming or nonlinear programming) may
be involved (Morshedi et al., 1985; Vargas-Villamil et al., 2003). Efficient solvers for linear and
quadratic programming problems are widely available, and can be integrated with readily available
tools such as Excel (Frontline Systems, 2005).

It must be noted the nature of the decision making inherent in the adaptive intervention problem
calls for MPC paradigms that consider both discrete-event and discrete-time decisions. Such deci-
sion policies would include choosing from among a set of different possible treatments, and assign
the appropriate dosages. Recent developments in so-called “hybrid” predictive control (Bemporad
and Morari, 1999) which enable the explicit inclusion of propositional logic into the decision-making
algorithms associated with MPC, are particularly appropriate. The extension of Model Predictive
Control with data-centric estimation is also appropriate and is discussed in the following section.

4.3 Model-on-Demand Estimation and Model Predictive Control

Model-on-Demand Predictive Control represents a data-centric decision framework that represents
an effective integration of identification and Model Predictive Control. The MoD approach pro-
vides the potential for performance rivaling that of global methods (such as neural networks) while
involving less complex a priori knowledge from the user and providing more reliable numerical com-
putations. Furthermore, in comparison to fuzzy-modeling and similar local modeling techniques,
the user is not forced to decide how many local models are required or how the controller will
transition between them.
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In recent years, data-centric estimation methods have received significant attention in the
systems literature, and signficant applications have been reported (Kulhavý, 2003). One such
novel concept for nonlinear identification and control is the Model-on-Demand (MoD) framework
(Stenman, 1999), which is inspired by ideas from local modeling and database systems technology
(Atkeson et al. (1997a; 1997b)). In MoD estimation all observations are stored on a database, and
the models are built “on demand” as the actual need arises. The Model on Demand predictor relies
on small portions of the data relevant to the region of interest to determine a model as needed.
The variance/bias tradeoff inherent to all modeling is optimized locally by adapting the number
of data and their relative weighting. From a practical standpoint, MoD estimation allows process
engineers to naturally extend insight gained from linear modeling to nonlinear identification and
control. Rather than spending time in a difficult structure selection and parameter initialization,
the user can focus on developing informative datasets – a common requirement for all nonlinear
black-box identification approaches. The user can fully examine the uniformity of coverage the
excitation signals produced in the input and output spaces and better understand the impact it
has on the nonlinear model validation and control problem. MoD can be formulated into a com-
prehensive methodology for nonlinear identification and predictive control (Braun, 2001; Braun et
al., submitted). A Matlab-based tool for MoD estimation and control, developed at the Control
Systems Engineering Laboratory at ASU in collaboration with researchers from the Division of
Automatic Control at Linköping University, is available in the public domain (Braun et al., 2002).

We believe that the adaptive, time-varying intervention problem will call for novel forms of MoD-
based predictive control systems that can address the challenges of a low signal-to-noise datasets
and exhibit hybrid decision making (where both continuous-time and discrete-event decision-making
may be necessary). Such a body of control engineering would be useful for a broad class of problems
in behavioral health and could also impact problems in enterprise systems (such as supply chains).

Figure 17: Depiction of local regressor selection for Model-on-Demand estimation
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5 Summary and Conclusions

This report has established some conceptual linkages between the problem of adaptive, time-varying
interventions in prevention and engineering process control. Specifically, we have shown that adap-
tive, time-varying interventions are feedback control systems, with the tailoring variable acting as
the controlled variable, the intervention representing the manipulated variable, and decision rules
serving the role of feedback control laws. A simulated study involving a hypothetical intervention
inspired by the Fast Track program compared the performance of a control policy based on a series
of IF-THEN decision rules with a model-based engineering PID controller tuned using Internal
Model Control. While the IF-THEN controller performed adequately under mostly deterministic
conditions with little or no disturbances (i.e., depletion), the IMC-PID controller was demonstrated
to perform well under conditions of significant disturbances, measurement noise, and nonlinearity.
In particular, the IMC-PID controller includes an adjustable parameter that can be used to influ-
ence the aggressiveness of the intervention and thus the sensitivity of dosage assignment to changes
in the estimated tailoring variables. The ability to determine the “speed-of-response” of the inter-
vention in this way enables the clinician making use of this adaptive intervention to influence the
performance/robustness tradeoff associated with feedback control systems, and thus makes the use
of engineering control principles a viable option in the control of highly nonlinear and stochastic
phenomena, as that encountered in prevention and treatment problems in behavioral health.

From an engineering control perspective, there are fundamental modeling challenges associated
with lack of a direct link to physical conservation relationships in the phenomena under study,
the presence of low signal-to-noise ratios in the data, and confounding/bias among variables. De-
cision rule design challenges include the presence of both discrete-event and continuous decision
variables, which leads to the potential need for hybrid data-centric modeling and control decision
frameworks that currently do not exist in the control literature. To this end, we propose taking
advantage of developments in the fields of system identification, Model Predictive Control, and
Model-on-Demand estimation and control to develop a novel body of comprehensive engineering
control technology geared towards adaptive, time-varying interventions and related problems in the
behavioral sciences.

Note: The Excel spreadsheet used to obtain the simulation results in this technical report can be
downloaded from the ASU Control Systems Engineering Laboratory website at:

http://wwww.fulton.asu.edu/~csel/Software.html.
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