










parental function to 65% and a simultaneous step unmea-
sured disturbanceD(k) = 4. In both the cases, the MPC
tuning parametersQy = 1, Q∆u = 0.1, Qu = Qd = Qz = 0,
(αr , fa) = (0, 0.3), the prediction horizonp= 40 and control
horizonm= 10 are used. TheTomlab-CPLEXsolver is used
to solve resultingmiqp optimization problems. From the
figure it can be seen that the controller designed using the
MoD approach is able to quickly achieve the desired setpoint,
and stabilizes the system at the setpoint. In contrast, the
controller relying on the linear ARX model oscillates around
setpoint. In addition, the proposed algorithm produces less
variation in the manipulated variable and provides uniform
performance. This fact is also confirmed by the performance
matricesJe andJ∆I given below:

Je =
t/Ts

∑
k=1

(PF(k)−PFgoal)T(PF(k)−PFgoal) (34)

J∆I =
t/Ts

∑
k=1

(I(k)− I(k−1))T(I(k)− I(k−1)) (35)

wheret represents total simulation time andTs is a sampling
time. The performance matricesJe andJ∆I represent measure
of cumulative deviation of parental function from the goal
and measure of cumulative variation in the intervention
dosages, respectively. For the MoD approach, values ofJe

and J∆I are 7.84× 103 and 1.11× 104, respectively, while
using the linear ARX model based MPC, these values
are 9.05× 103 and 1.55× 104, respectively. Thus, it can
be concluded that the proposed algorithm yields superior
performance and is suitable for the control of nonlinear
hybrid systems.

V. SUMMARY

Applications of hybrid systems are becoming increasingly
common in many fields. Recently, control engineering princi-
ples have been proposed for adaptive behavioral interventions
[21]; these systems are naturally hybrid in nature. In this
work, a Model-on-Demand Predictive Control (MoDPC)
approach for control of nonlinear hybrid systems and its
application to a simulated adaptive behavioral intervention
are presented. The formulation uses a Model-on-Demand
approach to obtain a local MLD model for the nonlinear
hybrid system at each time step. MoD is a data-centric
approach that uses a small neighborhood data around current
operating point characterized by the regressor vector. The lo-
cal MLD model generated by MoD estimator is then used to
specify a model predictive control law that relies on multiple-
degree-of-freedom tuning parameters [4]. Multiple-degree-of
freedom tuning enables the speed of disturbance rejection
and setpoint tracking affecting each output to be adjusted
individually; this has intuitive appeal. The applicability and
efficiency of proposed formulation is demonstrated on a
hypothetical intervention problem intended for improving
parental function in at-risk children. This problem exhibits
nonlinear dynamics with inherent discrete events. From the
simulation results, it can be concluded that the proposed
MoDPC is useful for the control of nonlinear hybrid systems,

displaying acceptable performance levels while simplifying
the task of modeling.
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