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Abstract— Control engineering offers a systematic and ef-
ficient means for optimizing the effectiveness of behavioral
interventions. In this paper, we present an approach to develop
dynamical models and subsequently, hybrid model predictive
control schemes for assigning optimal dosages of naltrexone as
treatment for a chronic pain condition known as fibromyalgia.
We apply system identification techniques to develop models
from daily diary reports completed by participants of a naltrex-
one intervention trial. The dynamic model serves as the basis
for applying model predictive control as a decision algorithm
for automated dosage selection of naltrexone in the face of the
external disturbances. The categorical/discrete nature of the
dosage assignment creates a need for hybrid model predictive
control (HMPC) schemes. Simulation results that include con-
ditions of significant plant-model mismatch demonstrate the
performance and applicability of hybrid predictive control for
optimized adaptive interventions for fibromyalgia treatment
involving naltrexone.

Index Terms— system identification, hybrid model predictive
control, fibromyalgia, optimized behavioral interventions

I. INTRODUCTION

Conventional medical practice is based on treatment plans
designed for a standard response that does not necessarily
incorporate individual characteristics or optimization proce-
dures. In behavioral health, the term adaptive interventions is
used to describe operationalized, individually-tailored strate-
gies for the prevention and treatment of chronic, relapsing
disorders [1]. Instead of relying solely on a clinician’s
intuition for assigning dosages, adaptive interventions em-
ploy decision rules and repeated assessments of participant
response to improve outcomes. Control systems engineering
principles applied to adaptive interventions have been pro-
posed as enablers for more efficacious treatments that min-
imize waste, increase compliance, and enhance intervention
potency [2], [3].

Fibromyalgia (FM) is a disorder characterized primarily
by chronic widespread pain. Other important symptoms of
FM include fatigue, sleep irregularities, bowel abnormalities,
anxiety, and mood dysfunction. The causes for FM are un-
certain, unknown or disputed; due to its chronic nature, it has
been difficult to single out a specific type of treatment for this
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disease. There is a good evidence to suggest that naltrexone
has a neuroprotective role and may be a potentially effective
treatment for diseases like FM [4], [5].

This paper is intended to demonstrate how control engi-
neering can positively impact the treatment of fibromyalgia.
The approach is based on a secondary analysis of infor-
mation collected from a previously conducted clinical trial
using naltrexone for the treatment of FM. We approach
this problem from a systems and controls point-of-view:
first, we apply system identification techniques to develop
models from daily diary reports completed by intervention
participants. These diary reports include self-assessments of
outcomes of interest (e.g., general pain symptoms, sleep
quality) and additional external variables that affect these
outcomes (such as stress, anxiety, and mood). The dynamical
systems model serves as the basis for applying model pre-
dictive control as a decision algorithm for dosage selection
of naltrexone in the face of the external disturbances. The
categorical/discrete-event nature of the dosage assignment
creates a need for hybrid model predictive control (HMPC)
schemes, which we contrast with its continuous counterpart.
Instead of conventional tuning using weight matrices, a mul-
tiple degree-of-freedom formulation is evaluated that enables
the user to adjust the speed of setpoint tracking, measured
disturbance rejection and unmeasured disturbance rejection
independently in the closed loop system.

The paper is organized in following sections: Section II
describes the clinical data and the system identification
methodology. In Section III, we show the MPC formulation
and present the application of both continuous and hybrid
control for delivering adaptive interventions under uncer-
tainty. Summary and conclusions are presented in Section IV.

II. U SING SYSTEM IDENTIFICATION TO MODEL FM
INTERVENTION DYNAMICS

In light of the unknown dynamics of FM, we evaluate an
empirical modeling approach where input-output data from
a clinical trial is used to build a model describing the effect
of drug and external factors on FM symptoms. This model
then serves as the basis for control design.

A. The Data

The data for this study has been taken from clinical trials
conducted by the Systems Neuroscience and Pain Lab in
the Stanford University School of Medicine. The study was
conducted in two phases: a single blind pilot study on 10
participants and a double blind full study on 30 participants
(with longer protocol). The time series is split into baseline,

Preprint of paper to appear in the 2011 American Control Conference, June 29 - July 1, 2011, San Francisco CA



placebo, drug and washout phases with the number of data
points ranging from 98 to 154 sampled daily (T = 1).
Participants entered their responses in a handheld computer
to questions like “Overall, how well did you sleep last
night?” on a scale of 0-100 as well as visited a clinic every
two weeks to undergo a series of physical sensory tests. The
daily diary data consists of one primary endpoint “Overall,
how severe have your FM symptoms been today?” [FM sym]
and 13 secondary endpoints: fatigue, sadness, stress, mood,
anxiety, satisfaction with life, overall sleep quality, trouble
with sleep, ability to think, headaches, average daily pain,
highest pain and gastric symptoms [4]. We classify these
variables as follows:

Outputs:We are primarily interested in understanding the
magnitude and speed at which naltrexone affects various FM
symptoms during the intervention. Hence typical symptoms
like pain, fatigue, sleep disturbance correspond to dependent
variables in the system which we classify as outputs.

Inputs: Drug and placebo are classified as the primary
inputs in this analysis, as they are introduced externally
to the system and can be manipulated by the clinician. In
addition to these primary inputs, there are other exogenous
or disturbance variables affecting the outputs. Variables in
the self-reports such as anxiety, stress, and mood are treated
as measured disturbance inputs that when coupled with the
primary inputs can help better explain the output variance
and ultimately improve the overall estimated model % fit.

Fig. 1 shows data for selected variables for a representative
participant who will be the focus of the results described in
the remainder of the paper.

B. System Identification Procedure

The modeling process undertaken in this study can be
summarized in three subparts as follows:

1) Data preprocessing.Initially the data is pre-processed
for missing entries. To reduce the high frequency con-
tent in the time series, a three-day moving average filter
is applied.

2) Discrete-time modeling using multi-input ARX models.
The filtered data is fitted to a parametric model. We rely
on multi-input ARX-[na nb nk] models

A(q)y(t) =
nu

∑
i=1

Bi(q)ui(t −nki )+e(t) (1)

wherenu represents the number of inputs,na, nb and
nk are model orders,e(t) is the prediction error, and
A(q) = 1+ ∑na

j=1a jq− j and Bi(q) = ∑
nbi
j=1b jq− j+1 are

polynomials in q, the forward shift operator. ARX
models are computationally simple to estimate and
can be consistently estimated provided the inputs
are persistently exciting and the model structure is
sufficiently high. In our examination of multiple
participants, ARX-[441] models were the highest order
needed, and in many cases ARX-[2 2 1] models were
suitable (as determined by classical prediction-error
validation criteria, per [6]).
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Fig. 1: Selected variables associated with the naltrexone
intervention of FM, as shown for a representative participant.
The naltrexone drug concentration was 4.5 mg.

The procedure for the choice of input signals is to begin
with drug and placebo, which are expected to contribute
significantly to FM symptoms for all participants. Ad-
ditional input variables are then introduced sequentially
to improve the goodness of fit. Consequently, while
increasing the number of inputs improves the overall
fit, an exceptionally high fit may not necessarily imply
a highly predictive model. Proper judgement on the
choice of input variables that adequately describes the
data across all participants must be made. The protocol
applied in this study did not allow for a crossvalidation
data set.

3) Simplification to a continuous time model.The step
responses from the ARX model are individually fit to a
parsimonious continuous second-order model structure
of the form

G(s) =
Kp(τas+1)

τ2s2+2ζτs+1
(2)

From (2) important dynamical system information such
as gain, time constant, overshoot, rise and settling times
for each input can be obtained.

The use of prediction-error models, and ARX models in
particular, is justified because we can rely on well-established
bias relations to obtain insight. For purposes of illustration,
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consider a system described by one manipulated input (e.g.,
drug), one measured disturbance input (e.g, anxiety) and
noise with plant and estimated models as follows:

y(t) = p(q)u(t)+ pd(q)d(t)+H(q)ν(t) (3)

= p̃(q)u(t)+ p̃d(q)d(t)+ p̃e(q)e(t) (4)

The one-step-ahead prediction error can be written as

e(t) = p̃e(q)
−1(y(t)− (p̃(q)u(t)+ p̃d(q)d(t))) (5)

Using Parseval’s theorem, we can write the filtered
prediction-error power spectrum as:

ΦeF (ω) =
|L|2

|pe|2
{|p− p̃|2Φu(ω)+ |pd − p̃d|

2Φd(ω)

+2Re((p− p̃)(pd − p̃d))Φud(ω)+ |H|2σ2
ν} (6)

whereν(t) is assumed to be uncorrelated withu(t) andd(t);
L(q) is the prefilter. From (6) it is possible to obtain insights
into how input power, model structure, cross-correlation be-
tween signals, and other factors can influence the goodness-
of-fit in the identification process.

C. Analysis for a representative participant

In this subsection, we focus on the application of the
system identification modeling procedure to a participant
from the pilot study with data as seen in Fig. 1. It was noted
that inputs power spectrum bandwidth was approximately
0.6 radians/day. As per (6), we minimizeΦud(ω) by select-
ing inputs which are not significantly cross-correlated. For
example, headache and gastric variables have high degree
of cross-correlation, and are also correlated with the FM
symptoms (output). Adding them as inputs did not yield
good estimates. In comparison, anxiety and mood variable
are essentially uncorrelated and offer good estimates when
included as inputs.

The multi-input ARX-[2 2 1] models applied to the repre-
sentative participant (with respective input(s) and FM symp-
toms treated as the primary output) are as follows:

1) Model 1 (Drug)
2) Model 2 (Drug, Placebo)
3) Model 3 (Drug, Placebo, Anxiety)
4) Model 4 (Drug, Placebo, Anxiety, Stress)
5) Model 5 (Drug, Placebo, Anxiety, Stress, Mood)

Fig. 2 shows the the step responses resulting for the ARX
models for the specific case of the naltrexone drug input.
The final model has a gain of−2.47, indicating a nearly 2.5
point drop in the pain report per mg dose of naltrexone. The
negative gain for drug allows us to classify this participant
as a responder to treatment. A rise time (Tr ) of slightly over
5 days, and a 98% settling time (Ts) of nearly 11.5 days
characterizes the naltrexone response for this participant.
Table I shows how including additional inputs improved the
goodness-of-fit for this participant.

Fig. 3 shows the corresponding fit for Model 5 which
explains 74% of the output variance. Beyond the five in-
puts noted, adding more variables did not improve the fit
significantly and resulted in overparameterization. For some
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Fig. 2: ARX model step responses for the drug-FM symp-
toms.

Model %fit Kp, τ ,ζ ,τa Tr (days) Ts(days)

1 46.5 -12.03, 5.67, 4.14, 21.3 75.5 139.69
2 59.2 -0.91, 3.5, 2.67, 44.4 0.43 75.06
3 64.7 -1.02, 2.09, 1.5, 15.3 0.43 25.6
4 71.8 -3.11, 1.62, 1.24, 0.22 7.53 14.38
5 73.9 -2.47, 1.57, 1.26, 1.96 5.12 11.49

TABLE I: Model estimate summary for the drug-FM model.
% fit corresponds to the multi-input ARX model structure
used.

participants, additional inputs like sadness and headache, as
well as ARX models with higher orders gave good fits.
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Fig. 3: Comparison of estimated versus measured FM symp-
toms output for ARX Model 5 (with drug, placebo, anxiety,
stress, mood as inputs).

Table II summarizes the transfer functions for all inputs
(manipulated and disturbance) for the Model 5 structure. For
all these transfer functions the settling times and rise times
(with the exception of Mood-FM) are essentially similar.
The positive gain for the placebo input indicates that in the
case of this participant, the administration of placebo has a
detrimental effect. The large magnitude of the placebo gain
is in part a consequence of how the input signal is coded
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Model Kp, τ ,ζ ,τa Tr (days) Ts(days)

Drug-FM -2.47, 1.57, 1.26, 1.96 5.12 11.49
Placebo-FM 45.81, 1.57, 1.26, 1.15 6.59 13.06
Anxiety-FM 0.86, 1.57, 1.26, 0.24 7.45 14.24
Stress-FM 2.29,1.57, 1.26, 0.49 7.31 13.94
Mood-FM -0.091, 1.57, 1.26, 4.67 0.8 11.93

Drug-OSleep 4.98, 2.13, 1.04, -3.35 7.06 15.83

TABLE II: Step response tabulation for various inputs-FM
continuous models as well as the drug-overall sleep (Drug-
OSleep) model.

(1 when present and 0 when not). Examining the gains for
the measured disturbance models (anxiety, stress, and mood),
these correspond to 0.86, 2.29, and−0.091, respectively. The
positive values for the anxiety and stress gains agree with
the clinical observation for how these variables worsen FM
symptoms. The low magnitude of the mood gain, coupled
with the relatively small contribution of this input to the
percent variance described by the model (approximately 2%)
indicates the low importance of this variable as a contributor
to FM symptoms. Table II also includes the model resulting
from the effect of drug to overall sleep. The positive gain
in this transfer function demonstrates improved sleep quality
with drug administration; however, the fact thatτa < 0 for
this model denotes the presence of inverse response.

III. M ODEL PREDICTIVE CONTROL OF A NALTREXONE

INTERVENTION FORFIBROMYALGIA

In a control engineering approach to adaptive interven-
tions, the controller assigns dosages to each participant
as dictated by model dynamics, problem constraints, and
disturbances (both measured and unmeasured). In this work,
we use Model Predictive Control (MPC) as the algorithmic
framework for making these systematic dosage assignments.
This control technology effectively combines feedback-
feedforward control action by online optimization of a cost
function using a receding horizon and is particularly suited
for designing treatment regimens.

An important consideration in adaptive interventions is
that intervention dosages can assume only discrete levels,
and therefore it is necessary to consider hybrid algorithms
[7]. A Mixed Logical Dynamical (MLD) framework is used
to represent linear hybrid systems which are systems with
real and integer states, inputs and constraints [8] as shown:

x(k+1) = Ax(k)+B1u(k)+B2δ (k)+B3z(k)

+Bdd(k) (7)

y(k) =Cx(k)+d′(k)+ν(k) (8)

E2δ (k)+E3z(k) ≤ E5+E4y(k)+E1u(k)−Edd(k) (9)

wherex andu represent states and inputs of the system.y is
the output andd, d′ andν represent measured disturbances,
unmeasured disturbances and measurement noise signals re-
spectively.δ andzare discrete and continuous auxiliary vari-
ables that are introduced in order to convert logical/discrete
decisions into their equivalent linear inequality constraints.
The effect of all unmeasured disturbances is lumped as

d′ in the measurement equation. Details of the controller
formulation examined in this work (both continuous and
hybrid) can be found in [7].

In this work, we rely on a three-degree-of-freedom (3
DoF) approach to tune our controller. The 3 DoF tuning
methodology enables performance requirements associated
with setpoint tracking, anticipated measured disturbance re-
jection and unmeasured disturbance rejection to be adjusted
independently ([9], [10]) by varying parametersαr , αd and
fa respectively. These parameters can be adjusted between
values 0 and 1; they in turn alter the response of Type I filter
( f (q,αi)) as

f (q,αi) =
(1−αi)q

q−αi
∀αi ∈ [0,1), i = {r,d} (10)

which supplies afiltered signal to the controller (for setpoint
tracking (αr ) and measured disturbance rejection (αd)) or
adjust the observer gain (K f ) as

K f =
[

0 ( fa)2 fa
]T

∀ fa ∈ (0,1] (11)

for unmeasured disturbance rejection. Hence the controller
can be tuned for slower rejection of measured disturbances,
e.g., by more extensive filtering of the disturbance signals.

The cost function used in this work can be described as:

min
{[u(k+i)]m−1

i=0 , [δ (k+i)]p−1
i=0 , [z(k+i)]p−1

i=0 }

J
△
=

p

∑
i=1

‖(y(k+ i)− yr)‖
2
Qy

(12)

such that mixed integer constraints of (9) hold true and:

ymin ≤ y(k+ i)≤ ymax, 1≤ i ≤ p (13)

umin ≤ u(k+ i)≤ umax, 0≤ i ≤ m−1 (14)

∆umin ≤ ∆u(k+ i)≤ ∆umax, 0≤ i ≤ m−1 (15)

wherep is the prediction horizon,m is the control horizon,
yr is the reference andQy is the penalty weight on the error.

A. Case Study

In this work, we demonstrate a drug dosage assignment
problem on the representative participant from Section II. A
continuous model from the estimated ARX Model 5 structure
is used as the nominal model. Let the drug dosages be on four
levels:u(k) ∈ {0,4.5,9,13.5} mg. The system characterized
by discrete inputs can be represented logically as:

δi(k) = 1⇔ zi(k) = 13.5− (i −1)×4.5 (16)

u(k) =
4

∑
i=1

zi(k)
4

∑
i=1

δi(k) = 1;i ∈ {1,2,3,4} (17)

These conditions and implications (⇔) are then converted
into inequality constraints as represented in (9). The control
system aims at performing the following three functions:

1) Setpoint tracking.Drug dosages are assigned to take an
outcome of interest (such as FM symptoms or overall
sleep quality) to a desired goal.

2) Measured disturbance rejection.The controller manip-
ulates drug dosages to mitigate the effect fromreported
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external influences (e.g., anxiety) using estimated dis-
turbance models.

3) Unmeasured disturbance rejection.The controller ma-
nipulates drug dosages to mitigate the effect of unknown
and unmodeled external influences.

This control system functionality is used to evaluate
the nominal performance of the proposed algorithm. For
comparative study, we evaluate both hybrid and continuous
solutions to the drug assignment problem. The parameters
for simulation are as follows: the controller horizons arep
= 25 andm = 15, Qy = 1 and the sampling time isT = 1
day. The sampling time is a potential design variable, as
it can be changed for different scenarios (although it is kept
constant in this paper). In a real-life setting, patients can enter
their daily diary reports to an information system which can
supply endpoint values in real-time to the controller.

The control results can be grouped in two categories :
1) evaluation of nominal performance for tracking and dis-
turbance rejection, and2) evaluation of robust performance
under plant-model mismatch. The FM symptoms variable
serves as the primary outcome in the analysis, while anxiety
(assumed to be reported daily by the participant) serves as
the measured disturbance signal. All other disturbances are
set equal to zero.

1) Nominal Performance:As a representative example,
we consider an intervention that seeks to reduce FM symp-
toms by 11% from an initial baseline condition of 50%. A
step measured disturbanced(k) = 12.9 is applied at dayt =
25, while an unmeasured disturbanced′(k) = 11 is applied
at dayt = 45.
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Fig. 4: Performance of hybrid MPC (four levels) with
tuning parameters ((αr ,αd, fa) = (0.4,0.4,0.4)) for setpoint
tracking (t = 0), measured (t = 25) and unmeasured (t = 45)
disturbance rejection; compared to continuous MPC.

The 3 DoF formulation allows us to tune the controller
independently for setpoint tracking and disturbance rejection
as shown in Fig. 4. We evaluate the following tuning param-
eter value:(αr ,αd, fa) = (0.4,0.4,0.4) where the controller
is de-tuned or the speed of response has been reduced as
compared to if no filtering is applied. The hybrid MPC result

is compared with respective continuous MPC cases (i.e.
whereu(t) can take any real value in its domain). For setpoint
tracking, αr can be adjusted to suit the expected response.
For example, a clinician may want to see that a desired
goal is achieved within a specified time limit. Similarly, the
response to disturbances can be varied byαd and fa to suit
the conditions at hand. By implementing filtering action, the
dosage assignments are more gradual in both cases and in the
case of hybrid control, dosages are increased in steps. Perfect
compensation of measured disturbances is possible in the
continuous case by the anticipative feedforward action of the
controller but because of the limitations imposed by discrete
dosage levels, the hybrid controller is unable to perform in
this manner. However, FM symptom deviations from setpoint
are not substantial whetheru(t) is continuous or discrete and
it can noted how the hybrid MPC follows the response from
continuous MPC.

2) Robust Performance:The case of plant-model mis-
match is presented to demonstrate the robustness of the
proposed formulation when there are significant differences
between the nominal controller model and the plant. Robust
performance is evaluated via simulation for the following
cases:

1) When a fixed nominal model is used for all participants.
A nominal model is used as a basis by the controller
to assign dosages for different plants. This case can be
understood in two ways: first, in the classical interpreta-
tion where the estimated model is an approximation of
the true system and second, when the nominal model
represents an average or representative model, with a
single, fixed controller assigning dosages to different
participants within this population.

2) When the true plant serves as the nominal model for
each participant.For each scenario considered in the
previous case, we supply the true plant as the nominal
model to the controller. This case can be understood as
when accurate modeling (through system identification
or otherwise) has been performed for each individual in
a population.

We compare and contrast the performance between these
two scenarios to see the effect of model accuracy for
achieving desired performance. The tuning parameters used
are (αr , fa) = (0.4,0.4) and are kept constant in all simula-
tions. We present five scenarios of mismatch in the plant
dynamics represented by (2), in the presence of both a
setpoint change of−8.5% and an unmeasured disturbance
d′ = 2.5 occuring att = 0. We apply no measured dis-
turbance (d = 0). From many possible combinations, we
use the following mismatch scenarios: 1) nominal model
(no mismatch); 2)∆K = (−14.8%); 3) ∆K = (14.8%);
4) ∆K,∆ζ ,∆τ = (−14.8%,−16.6%,259%); 5) ∆K,∆ζ ,∆τ =
(14.8%,79.3%,191%).

We note that under significant model uncertainties, the
hybrid controller manages to adapt dosages for best possible
performance for both cases under consideration. For mis-
match scenario 2 and 3, an offset due to gain mismatch is
observed as seen in Fig. 5a. Also for scenario 3, Fig. 5b in the
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(a) Closed loop response with plant model mismatch where scenario 1
represents the nominal model
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Fig. 5: Robustness evaluation using parameter perturba-
tions on drug-FM model. Controller tuning parameters are:
(αr , fa) = (0.4,0.4).

presence of an accurate nominal model, the hybrid controller
tries best to minimize error and we see an oscillatory output.
For scenario 4, Fig. 5a, we see more oscillatory responses
with offset due to reducedζ . For scenario 5, Fig. 5a, we
see more sluggish response due to increasedζ and/orτ. In
comparison, when accurate nominal models are available, we
observe a much tighter control for scenarios 4 and 5, Fig.
5b. It should also be noted that due to hybrid dynamics,
the controller can only choose an input on allowed levels
and hence we may observe offset and oscillatory responses.
From these results, we conclude that this MPC formulation
can show acceptable performance in the presence of model
error, although better results can be obtained by increasing
model accuracy per participant. The proper tradeoff between
modeling effort and controller performance will depend on

clinical requirements. Details of robustness analysis with
additional cases can be found in [11].

IV. SUMMARY AND CONCLUSIONS

In this paper we demonstrate how by using system
identification and hybrid MPC, it is possible to design an
adaptive intervention that assigns appropriate dosage levels
of naltrexone as a treatment for fibromyalgia. The approach
described in this work generates models from experimental
data and considers hybrid dynamics in an MLD frame-
work. We performed a secondary data analysis to estimate
parsimonious models from data available through clinical
trials. Since any modeling effort will not result in an exact
description of the real system, the controller formulation
should be robust enough to handle plant-model mismatch
and unknown disturbances. Additionally, successful handling
of disturbances or external influences is critical from a
standpoint of an effective treatment plan. From simulation
results, we show that this MPC setup maintains the outcome
variable at goal in presence of disturbance and uncertainties.
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